0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
public class LogIterative {
public static int log(int x, int y) {
int res = 0;
while (x >= y && y > 1) {
res++;
x = x/y;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
log(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 15 rules for P and 8 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
942_0_log_Load(x1, x2, x3, x4) → 942_0_log_Load(x2, x3, x4)
Filtered duplicate args:
942_0_log_Load(x1, x2, x3) → 942_0_log_Load(x2, x3)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 1 && x1[0] <= x0[0] →* TRUE)∧(942_0_log_Load(x1[0], x0[0]) →* 942_0_log_Load(x1[1], x0[1]))∧(x1[0] →* x1[1]))
(1) -> (0), if ((942_0_log_Load(x1[1], x0[1] / x1[1]) →* 942_0_log_Load(x1[0], x0[0]))∧(x1[1] →* x1[0]))
(1) (&&(>(x1[0], 1), <=(x1[0], x0[0]))=TRUE∧942_0_log_Load(x1[0], x0[0])=942_0_log_Load(x1[1], x0[1])∧x1[0]=x1[1] ⇒ 942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0])≥NonInfC∧942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0])≥COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥))
(2) (>(x1[0], 1)=TRUE∧<=(x1[0], x0[0])=TRUE ⇒ 942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0])≥NonInfC∧942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0])≥COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥))
(3) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])), ≥)∧[(3)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (&&(>(x1[0], 1), <=(x1[0], x0[0]))=TRUE∧942_0_log_Load(x1[0], x0[0])=942_0_log_Load(x1[1], x0[1])∧x1[0]=x1[1]∧942_0_log_Load(x1[1], /(x0[1], x1[1]))=942_0_log_Load(x1[0]1, x0[0]1)∧x1[1]=x1[0]1 ⇒ COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[1], x0[1]), x1[1])≥NonInfC∧COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[1], x0[1]), x1[1])≥942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])∧(UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥))
(9) (>(x1[0], 1)=TRUE∧<=(x1[0], x0[0])=TRUE ⇒ COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[0], x0[0]), x1[0])≥NonInfC∧COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[0], x0[0]), x1[0])≥942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], /(x0[0], x1[0])), x1[0])∧(UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥))
(10) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} + min{max{x1[0], [-1]x1[0]} + [-1], max{x0[0], [-1]x0[0]}} ≥ 0)
(11) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} + min{max{x1[0], [-1]x1[0]} + [-1], max{x0[0], [-1]x0[0]}} ≥ 0)
(12) (x1[0] + [-2] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0∧[2]x0[0] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[-1 + (-1)bso_22] + x1[0] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0∧[2]x0[0] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x1[0] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] + [2]x1[0] + [2]x0[0] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x1[0] ≥ 0)
(15) (x1[0] ≥ 0∧x0[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x1[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(942_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1]x2 + [-1]x1
POL(942_0_log_Load(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(COND_942_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1]x3 + [-1]x2 + x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, x1[0])1 @ {942_1_MAIN_INVOKEMETHOD_2/0, 942_0_log_Load_2/1}) = max{x1, [-1]x1} + [-1]min{max{x2, [-1]x2} + [-1], max{x1, [-1]x1}}
COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[1], x0[1]), x1[1]) → 942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])
942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0]) → COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])
COND_942_1_MAIN_INVOKEMETHOD(TRUE, 942_0_log_Load(x1[1], x0[1]), x1[1]) → 942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[1], /(x0[1], x1[1])), x1[1])
942_1_MAIN_INVOKEMETHOD(942_0_log_Load(x1[0], x0[0]), x1[0]) → COND_942_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x1[0], x0[0])), 942_0_log_Load(x1[0], x0[0]), x1[0])
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 → FALSE1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer